Research Topics
I'm interested in AI4Science, typically in protein structure prediction (AF2/3), de novo protein design, molecular dynamics, machine learning force fields, protein ligand docking, etc. Representative papers are highlighted. If you are interested in these topics, please feel free to contact me.
|
Publications ( * denotes equal contribution)
|
|
Ab initio characterization of protein molecular dynamics with AI2BMD
Tong Wang, 
Xinheng He, 
Mingyu Li, 
Yatao Li, 
Ran Bi, 
Yusong Wang, 
Chaoran Cheng, 
Xiangzhen Shen, 
Jiawei Meng, 
He Zhang, 
Haiguang Liu, 
Zun Wang, 
Shaoning Li, 
Bin Shao, 
Tie-Yan Liu
Nature 2024  
Molecular dynamics; Machine learning force fields
[Paper]    [Code]    [Blog]
|
|
Neural P3M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs
Yusong Wang*, 
Chaoran Cheng*, 
Shaoning Li*, 
Yuxuan Ren, 
Bin Shao, 
Ge Liu, 
Pheng-Ann Heng, 
Nanning Zheng, 
38th Conference on Neural Information Processing Systems (NeurIPS 2024)  
Molecular Representation Learning; Long-range Interaction Modeling; Geometric GNNs
[Paper]
|
|
Improving AlphaFlow for Efficient Protein Ensembles Generation
Shaoning Li*, 
Mingyu Li*, 
Yusong Wang, 
Xinheng He, 
Nanning Zheng, 
Jian Zhang, 
Pheng-Ann Heng 
41st International Conference on Machine Learning (ICML 2024 AI4Science workshop)  
Protein ensembles generation; Flow matching; AlphaFold
[Paper]
|
|
Highly accurate carbohydrate-binding site prediction with DeepGlycanSite
Xinheng He, Lifen Zhao, Yinping Tian, Rui Li, Qinyu Chu, Zhiyong Gu, Mingyue Zheng, Yusong Wang, Shaoning Li, Hualiang Jiang, Yi Jiang, Liuqing Wen, Dingyan Wang, Xi Cheng
Nature Communications (NC 2024)  
Binding sites predictoin; Carbohydrates
[Paper]
|
|
F3low: Frame-to-Frame Coarse-grained Molecular Dynamics with SE(3) Guided Flow Matching
Shaoning Li*, 
Yusong Wang*, 
Mingyu Li*, 
Jian Zhang, 
Bin Shao, 
Nanning Zheng, 
Jian Tang 
12th International Conference on Learning Representations (ICLR 2024 GEM workshop)  
Coarse-grained protein dynamics; SE(3) Flow matching
[Paper]
|
|
Enhancing geometric representations for molecules with equivariant vector-scalar interactive message passing
Yusong Wang*, 
Shaoning Li*, 
Xinheng He, 
Mingyu Li, 
Zun Wang, 
Nanning Zheng, 
Bin Shao, 
Tie-Yan Liu 
Nature Communications (NC 2024)  
Molecular dynamics; Machine learning force fields; Equivariant graph neural networks
Editor's Highlights in AI and Bio
[Paper]    [Code]    [Blog]
|
|
Geometric Transformer with Interatomic Positional Encoding
Yusong Wang*, 
Shaoning Li*, 
Bin Shao, 
Nanning Zheng, 
Tie-Yan Liu 
37th Conference on Neural Information Processing Systems (NeurIPS 2023)  
Molecule representation learning; Transformers; Positional encoding
[Paper]
|
|
Reinforced, Incremental and Cross-lingual Event Detection From Social Messages
Hao Peng, 
Ruitong Zhang, 
Shaoning Li, 
Yuwei Cao, 
Shirui Pan, 
Philip Yu 
IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI 2022)  
Social event detection; Graph data mining; Reinforcement learning
Highly Cited Paper
[Paper]
|
|